Search results

Search for "enzyme engineering" in Full Text gives 8 result(s) in Beilstein Journal of Organic Chemistry.

Chemoenzymatic synthesis of macrocyclic peptides and polyketides via thioesterase-catalyzed macrocyclization

  • Senze Qiao,
  • Zhongyu Cheng and
  • Fuzhuo Li

Beilstein J. Org. Chem. 2024, 20, 721–733, doi:10.3762/bjoc.20.66

Graphical Abstract
  • efficiency of synthetic approaches, have already shown a growing influence in the synthesis of bioactive natural products, pharmaceutical components, and other valuable molecules with the development of microbial genetics and enzyme engineering [19][20][21][22]. The comprehensive investigation of TE domains
PDF
Album
Review
Published 04 Apr 2024

Recent developments in the engineered biosynthesis of fungal meroterpenoids

  • Zhiyang Quan and
  • Takayoshi Awakawa

Beilstein J. Org. Chem. 2024, 20, 578–588, doi:10.3762/bjoc.20.50

Graphical Abstract
  • for the design of biosynthetic machineries to produce a variety of bioactive meroterpenoids. Keywords: αKG-dependent dioxygenases; enzyme engineering; fungal meroterpenoids; synthetic biology; terpene cyclases; Introduction Meroterpenoids are complex natural products with intricate skeletal
PDF
Album
Review
Published 13 Mar 2024

A Streptomyces P450 enzyme dimerizes isoflavones from plants

  • Run-Zhou Liu,
  • Shanchong Chen and
  • Lihan Zhang

Beilstein J. Org. Chem. 2022, 18, 1107–1115, doi:10.3762/bjoc.18.113

Graphical Abstract
  • reactions (Figure S1, Supporting Information File 1). Due to the high reaction selectivity that the enzyme active site offers, these enzymes provide biocatalytic means for the biaryl linkage formation, and recent enzyme engineering efforts also demonstrated selective and efficient production of unnatural
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2022

Biochemistry of fluoroprolines: the prospect of making fluorine a bioelement

  • Vladimir Kubyshkin,
  • Rebecca Davis and
  • Nediljko Budisa

Beilstein J. Org. Chem. 2021, 17, 439–460, doi:10.3762/bjoc.17.40

Graphical Abstract
PDF
Album
Review
Published 15 Feb 2021

Strategies in megasynthase engineering – fatty acid synthases (FAS) as model proteins

  • Manuel Fischer and
  • Martin Grininger

Beilstein J. Org. Chem. 2017, 13, 1204–1211, doi:10.3762/bjoc.13.119

Graphical Abstract
  • engineering strategies in the light of the newly emerging structural information on megasynthases, and argue that fatty acid synthases (FAS) are and will be valuable objects for further developing this field. Keywords: fatty acid synthases; megasynthases; metabolic enzyme engineering; polyketide synthases
PDF
Album
Review
Published 21 Jun 2017

Opportunities and challenges for the sustainable production of structurally complex diterpenoids in recombinant microbial systems

  • Katarina Kemper,
  • Max Hirte,
  • Markus Reinbold,
  • Monika Fuchs and
  • Thomas Brück

Beilstein J. Org. Chem. 2017, 13, 845–854, doi:10.3762/bjoc.13.85

Graphical Abstract
  • terpene producing Escherichia coli, this review shall give an insight in recent progresses regarding manipulation of mostly diterpene synthases. Keywords: enzyme engineering; heterologous production in E. coli; metabolic pathway optimization; modular biosynthesis; plant diterpenes; Introduction
  • feedback inhibition loops. Heterologous production of several diterpenes could already be realized in stable systems with moderate yields, validating the established approaches of enzyme engineering for terpene synthases. Yet this success could not be transferred in full extend to heterologous expression
PDF
Album
Review
Published 08 May 2017

Posttranslational isoprenylation of tryptophan in bacteria

  • Masahiro Okada,
  • Tomotoshi Sugita and
  • Ikuro Abe

Beilstein J. Org. Chem. 2017, 13, 338–346, doi:10.3762/bjoc.13.37

Graphical Abstract
  • a tryptophan residue modified with an isoprenyl group is not always restricted to a location near the C-terminal end. The broad substrate tolerance of the modifying enzyme ComQ may attract attention as an enzyme engineering target for the synthesis of prenylated tryptophan derivatives. However
PDF
Album
Review
Published 22 Feb 2017

Biosynthesis of rare hexoses using microorganisms and related enzymes

  • Zijie Li,
  • Yahui Gao,
  • Hideki Nakanishi,
  • Xiaodong Gao and
  • Li Cai

Beilstein J. Org. Chem. 2013, 9, 2434–2445, doi:10.3762/bjoc.9.281

Graphical Abstract
  • from Thermotoga neapolitana [22]. However, two main problems still exist for the AI-catalyzed D-tagatose synthesis. The catalytic efficiency of AI for D-galactose is relatively low compared to its natural substrate L-arabinose. Enzyme engineering has thus been reported to improve the efficiency of AI
PDF
Album
Review
Published 12 Nov 2013
Other Beilstein-Institut Open Science Activities